This article can be cited before page numbers have been issued, to do this please use: J. Chen, W. Huang, T. Zhang, M. Lu and B. Jiang, Food Funct., 2018, DOI: 10.1039/C8FO01089G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Anti-Obesity Potential of Rare Sugar D-psicose by Regulating Lipid Metabolism in Rats

Jingjing Chen¹,², Weilai Huang¹,², Tao Zhang¹,², Mei lu³, Bo Jiang¹,²*

1: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
2: International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
3: Department of Food Science & Technology, University of Nebraska–Lincoln, Lincoln, NE, USA

*Corresponding Author. Tel: 86-510-85915296; Fax: 86-510-85913622

E-mail address: bjiang@jiangnan.edu.cn (B. Jiang)
Abstract

D-psicose is a new generation sugar substitute with low calorie value while still offering desirable sweetness. This objective of this study was to investigate the anti-obesity potential of D-psicose and possible mechanism using Wistar rats as animal model. Animals were divided into five groups and supplemented with diets containing 5% of different carbohydrates including glucose, fructose, cellulose, D-psicose and control diet for 4 weeks, respectively. After sacrifice, blood lipid profile, tissue morphology and related genes participated in lipid metabolism were analyzed. Results indicated supplementation of D-psicose lead to minimum fat accumulation in rats compared with other carbohydrates. The blood lipid profile and anti-oxidative activity of the rat was also improved. D-psicose can regulate lipid metabolism by increasing lipid metabolism related enzymes such as SDH in serum and liver, and HL in the liver. D-psicose can prevent fat accumulation by suppressing the expression of lipogenesis related gene ACCα, hepatic fatty acid uptake gene including FAS and SREBP-1c gene, while stimulating the expression for fatty acid oxidation related gene including AMPK2α, HSL and PPARα. In conclusion, D-psicose can be a healthy alternative to traditional sweetener.

Keywords: D-psicose; Body weight; Lipid profile; Lipid metabolism; Antioxidant
1. Introduction

Overweight and obesity has been a serious health problem all over the world.

According to WHO (World Health Organization), the global obese population has increased nearly three times since 1975. In 2016, 1.9 billion adults were overweight, accounting for more than one quarter of world population. Overweight and obesity were proved to cause complications such as heart disease, cardiovascular disease, high blood pressure, type 2 diabetes and even cancers. Studies have confirmed that increased intake of food and beverage rich in calories such as sugar and fat is one of the major reason that cause obesity. Over the past several decades, researchers had developed sugar substitutes to replace nature sugar in foods and beverages. But there was constant controversy over using synthetic sugar substitutes sweeteners such as aspartame, saccharine and sucralose. Studies reported these synthetic sweeteners may increase body weight and interfere physiological process. Hence there is a growing interest in developing and evaluating nature sugar substitutes such as sugar alcohols and rare sugars with significantly lower calorie, but still offer comparable sweetness.

D-psicose is a kind of rare sugar with 70% the sweetness of sucrose but only 0.3 % of calorie. D-psicose, also known as D-allulose and D-ribo-2-hexulose, is a C-3 epimer of D-fructose. It occurs in small quantity in some fruits and some foods that has been processed. D-psicose can be produced by enzymatic transformation from D-fructose using D-psicose 3-epimerase. It has been listed as GRAS (Generally Regarded as Safe)
Safe) by the U.S. Food and Drug Administration. D-psicose has gained tremendous interest in recent years for its significant health promoting potentials. Several studies had reported the anti-obesity effect of D-psicose. More importantly, it cannot be metabolized in the body. D-psicose cannot be absorbed in the small intestine and do not ferment in large intestine. Furthermore, D-psicose can help to normalize body weight and prevent obesity. For example, rats/mice fed with D-psicose had lower body weight, reduced visceral fat mass, reduced food intake and decreased lipogenesis, lower blood insulin and glucose level compared to rats/mice with normal diet. Han found that D-psicose can regulate lipid metabolism disorder in mice induced by high fat diet. The potential mechanism was regulation of genes participated in lipid metabolism such as fatty acid synthase and fatty acid β-oxidation. Nagata reported consumption of D-psicose could increase energy expenditure of rats in the day and fat oxidization at night by altering lipid metabolism through the regulation of related genes. Studies have reported D-psicose can decrease final body weight in obese rats by regulating major genes such as Fos, Mmp3, Fgf21, and Abcd2 in lipid metabolism and inflammatory responses. Rats supplemented with both high fat diet and D-psicose showed less fat pad mass compared with control group. It was caused by the potential of D-psicose to regulate lipid metabolism and gene expression related to fecal lipids. D-psicose was reported to enhance 24h energy expenditure in Sprague-Dawley rats and therefore contribute to weight management. D-psicose can reduce visceral fat in diet induced obesity rats. Luminal D-psicose may stimulate
Glucagon-like peptide 1 (GLP-1), a gastrointestinal hormone that is responsible for body weight regulation. Until now, there are only a limited number of studies reported the underlying mechanism behind these phenomena. In the present study, we examined the effect of four different dietary carbohydrates including glucose, fructose, D-psicose and cellulose on lipid metabolism of rats supplemented with normal diet. We compared the effect of these carbohydrates on the body weight, lipid profile, antioxidant level and expression of lipid metabolism related genes in rat liver. Since liver placed a key role in lipid metabolism, we further investigated the effect of D-psicose on some key genes in lipid metabolism that has not been reported before. It may provide a more comprehensive insight regarding how D-psicose exhibit its anti-obesity potential.

2. Experimental
2.1 Material
D-psicose with the purity of 98% was prepared by our own lab by biotransformation method as described before. Bovine serum albumin (BSA) was obtained from Sangon Biotech (Shanghai, China). Coomassie brilliant blue G-250, glucose, ethanol, sulfuric acid, casein, L-leucine, corn starch, sucrose, cellulose, choline chloride, formaldehyde and sodium chloride were all analytical grade and purchased from Sinopharm Chemical Reagent (Shanghai, China). Total cholesterol (TC), triglyceride, free fatty acid (FFA), low density lipoprotein-cholesterol (LDL-C), superoxide dismutase (SOD), succinate dehydrogenase (SDH), hepatic lipase (HL), catalase
(CAT), glycogen assay kit, glucose assay kit, rat insulin ELISA kit, and RNA storage solution were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Diethyl pyrocarbonate (DEPC) water, animal total RNA isolation kit, design and synthesis of primer were obtained from Shanghai Generay Biotech Co., Ltd (Shanghai, China). RT-PCR kit and SYBR fluorescent dye were purchased from TaKaRa Clontech (Dalian, China).

2.2 Animals, diets, and experimental procedure

Animal experiments were approved by Jiangnan University Institutional Animal Care and Use Committee (JU20140430-1) and conducted in compliance with the *Fundamental Guidelines for Proper Conduct of Animal Experiments and Related Activities at Jiangnan University*. Thirty male Wistar rats (3-week-old) were obtained from Shanghai Slac Laboratory Animal, Co Ltd (Shanghai, China). Upon arrival, the rats were kept in animal room with controlled temperature of 23 ± 2 °C, humidity of 60 ± 5%, 12h day/night cycle. The rats had free access to food and water. After acclimation for 1 week, rats were randomly divided into 5 groups and administered with diets only differ in dietary carbohydrate type. The diets were prepared in reference to AIN-76A diets with 5% of different carbohydrate in each group. During the whole experiment period, the body weight of the rats was measured every other day. The food intake was also recorded. After 4 weeks, the rats were sacrificed by carbon dioxide asphyxiation. Cardiac blood was collected, centrifuged at 1300 g for 10 min (4°C). Serum on the top layer was collected and stored in a -80 °C freezer.
Liver, heart, soleus, abdominal fat, epididymal fat were harvested and weighed immediately. The liver was then cut into three pieces: one piece was stored in RNA storage solution, one was immediately frozen with liquid nitrogen and stored in a -80°C freezer. Another piece was fixed with 4% paraformaldehyde for histopathological analysis. The abdominal fat was also fixed with 4% paraformaldehyde for histopathological analysis.

2.3 Blood lipid profile analysis

Total cholesterol, triglyceride, low-density lipoprotein cholesterol and free fatty acid in the serum were determined with analytical kit following advised protocols.

2.4 Histopathological analysis

Paraformaldehyde fixed hepatic and epididymal fat were processed for dehydration, paraffin embedding, sectioning and Hematoxylin and Eosin staining according to method described before. The tissue slides were observed under a Nikon Eclipse Ti microscope (Nikon Corporation, Tokyo, Japan) for hepatic cell morphology.

2.5 Biological analysis

Hepatic sample preparation: a small piece of hepatic sample (about 100 mg) was thawed. The tissue was then placed in a precooled blender. Then 9 times of physiological saline by weight of the sample was added. The tissue was homogenized at full speed every 30 s for a total of 2 min. The hepatic homogenate was then centrifuged at 3000 g for 10 min. The supernatant was collected. The protein content in hepatic tissue was determined by Bradford method.
The catalase (CAT) and superoxide dismutase (SOD) in serum were determined with commercial kits (Nanjing Jiancheng Bioengineering Institute). The CAT, SOD, Succinate dehydrogenase (SDH) and Hepatic lipase (HL) in hepatic tissue were also determined with commercial kit.

2.6 Real-Time PCR Analysis

Hepatic tissue (about 100mg) was mixed with 1mL TRIZol reagent and crushed in liquid nitrogen with a mortar and pestle. Total RNA in each sample was extracted following method described before. The RNA was then converted into single-stranded cDNA using reverse transcription. The fluorescent quantification of genes in lipid metabolism were carried out using SYBR Premix Ex Taq II in a Bio-Rad CFX96 Real-Time PCR Detection system (Hercules, CA). The primers used in this study were: GADPH F: 5’-ATGGCCTTCCGTGTTCTACCC-3’, R: 5’-GCCTGCTTCACCTTCTTGATG-3’, AMPKα2 F: 5’-CAGAGCAAACCATAAGACA-3’, R: 5’-GCATTCACTACCTTCCATTC-3’, SREBP-1c F: 5’-CTGCTTGGCTTTTCTTCTCTTT-3’, R: 5’-GCATTCACTACCTTCCATTC-3’, PPARα F: 5’-ACGGTGTGTATGAAGCCA-3’, R: 5’-GAACTCTCGGGTGATGAAG-3’, ACC F: 5’-ATGTTGGGAGTTGTGTGTG-3’, R: 5’-AGAAGTGTGTGAGCAGGAAG-3’, HSL F: 5’-CCTCTGCTTCTCCCTCTC-3’, R: 5’-AAAATGGTCCTCCGTCTC-3’, FAS F: 5’-GGAGTTGAAGAGGAGCGT-3’, R: 5’-ACGGTTGACAGCAATAG-3’. The copy number of each transcript was
calculated with GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) as internal control using the $2^{-\Delta\Delta Ct}$ method.

2.7 Statistic analysis

All data are presented as mean ± SD. ANOVA was used to compare the differences among more than two groups followed by Tukey’s Honestly Significant Difference Test. A $p<0.05$ was considered statistical significant.

3 Results and Discussion

3.1 Food intake, body weight and tissue weight

The rats were administered with diets containing 5% carbohydrates for 4 weeks to determine the effect of different carbohydrates on weight increase. As shown in Figure 1, there was a steady increase in body weight for rats in all groups. As shown in Table 2, the final body weight of rats in D-psicose group was lower than other four groups. It was 13.4% less than control group. The increase of body weight in rats supplemented with D-psicose was significantly lower than other four groups ($p<0.05$). It was 20.8% lower than the control group. The result was in agreement with earlier published studies. The daily food intake in D-psicose group was higher than control group. The daily food intake in cellulose group was higher than other groups. This might lead to the high body weight increase secondary to control group. The excessive calorie was stored in the body in the form of white adipose including abdominal adipose, epididymal fat and mesentery fat. As shown in Table 1, the
abdominal fat and epididymal fat in D-psicose group were significantly lower than other groups (p<0.05). They were 53.8% and 49.3% lower than that of control group. The weight of liver in D-psicose group was lower than control group, glucose group and fructose group. This may indicate that D-psicose can prevent fat from accumulating in the liver. Short term intake of D-psicose lead to least weight gain (p<0.05) compared with other carbohydrates. This might due to the fact that D-psicose had relatively low energy value compared with other carbohydrates. Another possible reason is that D-psicose is absorbed in the small intestine without metabolism and then excreted in urine or feces, no calorie was generated. All these results suggested that D-psicose can prevent significant body weight increase compared with other dietary carbohydrates such as corn starch, glucose, fructose and cellulose.

3.2 Blood lipid profile

We then examined the effect of different dietary carbohydrates on blood lipid profile including triglyceride, free fatty acid (FFA) and low-density lipoprotein cholesterol (LDL-C). The level of TG, FFA and LDL-C in blood are important indicators for lipid metabolism disorder. As seen in Table 2, after 4 weeks, the triglyceride in D-psicose group was clearly lower than other groups. It was 41.5% lower than the TG content in control group (p<0.05). The TC level in D-psicose group was lower than control and cellulose group but higher than glucose and fructose group. The free fatty acid (FFA) in the blood is associated with lipid and sugar metabolism. FFA content in
D-psicose group was 51.1% less than control group (p<0.05). Low density lipoprotein cholesterol (LDL-C) was also known as ‘bad cholesterol’. Increased LDL-C in the blood may increase the risk of cardiovascular disease. The LDL-C levels in fructose group, D-psicose group and cellulose group was lower than control group (p<0.05). The LDL-C in D-psicose group was 34.5% lower than control. In conclusion, supplementation of D-psicose may contribute to blood lipid profile improvement.

3.3 Effect of D-psicose on antioxidant level in serum and hepatic tissue

Body antioxidant level is one important indicator of obesity. High carbohydrate diet may increase oxidative stress in rats and induce lipid metabolism disorder. Therefore, we examined the antioxidant capacities of liver and serum after supplemented with different dietary carbohydrates. Two enzymes, superoxidative dismutase (SOD) and catalase (CAT) were analyzed. These enzymes can remove free radicals inside the body and decrease the damage to liver caused by increased fat accumulation. The effect of different dietary carbohydrates on antioxidant activity in serum and hepatic tissue was shown in Table 3. The serum and hepatic level of CAT in D-psicose treated group were significantly (p<0.05) higher than other groups. They were 139.1% and 165.7% higher than control group. The serum and hepatic level of SOD in D-psicose group were also higher than other groups. In conclusion, D-psicose can improve the antioxidant capacity of the body through the increase of CAT activity.
3.4 D-psicose on lipid metabolism related enzymes

In this part, we examined the effect of D-psicose on succinate dehydrogenase (SDH) and hepatic lipase (HL) in serum and liver. Succinate dehydrogenase is an enzyme complex located in the mitochondrial membrane. It played an important role in citric acid cycle. The SDH content reflects the speed of citric acid cycle, which is essential in lipid, protein and carbohydrate metabolism. The SDH and HL level in Wistar rats can be seen in Table 4. The SDH level in D-psicose group were significantly (p<0.05) higher than other groups for both liver and serum samples. This may suggest D-psicose can stimulate the metabolism of lipid, protein and carbohydrate, which will ultimately lead to the decrease of fat accumulation in the body and decreased body weight. The major function of HL is to hydrolyze triglycerides and phospholipids of lipoprotein. As shown in Table 5, the D-psicose group had the highest HL content. It was 27.1% higher than control group. This result may suggest that D-psicose can increase lipid metabolism and maintain the cholesterol level inside the cell.

3.5 Effect of D-psicose on hepatic and adipose tissue morphology

Liver is the main location for lipid metabolism, abnormality in liver morphology may indicate hepatic disorder. As shown in Figure 2d, the morphology of hepatic lobule in D-psicose group was clear, and the hepatic cells were evenly distributed. There was no obvious abnormality observed. But for glucose group (Figure 2b) and fructose group (Figure 2c), there was no obvious borders between different cells. There were more...
fat deposits in samples from other four carbohydrates than D-psicose. For control

control group (Figure 2a) and cellulose group (Figure 2e), the hepatic morphology was better

than glucose group and fructose group but still not as good as D-psicose group.

Inflammatory infiltrate and fat vacuolation could be observed in these samples. From

this experiment, we may conclude that D-psicose could reduce the accumulation of fat

in the liver. The morphology of epididymal adipocyte was shown in Figure 3. As

shown in Figure 3, the adipocytes in D-psicose group was significantly smaller than

other groups, which indicated less fat deposition. When there is an energy surplus in

the body, the energy will accumulate as fat in adipocyte and cause hypertrophy. This

result was in accordance with the analysis result of body weight. The rats in this

group had lowest body weight and body fat content. Meanwhile, there was no

pathological change for hepatic tissue in this group. For normal carbohydrate groups,

the accumulation of lipids and fat mass may trigger the release of cytokines and

chemokines, thus initiating inflammation response and cause the dysfunction of

hepatic and adipose tissue. These results may suggest D-psicose could modulate the

lipid metabolism disorder, control body weight and body fat. To further elucidate the

potential mechanism for the regulation of lipid metabolism, we then analyzed the

expression of lipid metabolism related genes in hepatic tissue.
3.6 Effect of D-psicose on mRNA levels of lipid metabolism-related genes

In order to elucidate the underlying mechanism for the anti-obesity activity of D-psicose, we analyzed lipid metabolism related genes in rats fed with different carbohydrates.

3.6.1 ACCα

Acetyl-CoA carboxylase is a carboxyl transferase that catalyze the carboxylation of acetyl-CoA to malonyl-CoA. The main function of ACC is to provide substrate for the synthesis of free fatty acid. There are two subunits of ACC: ACCα and ACCβ.

ACCα mainly existed in cell cytoplasm of lipogenic tissue such as liver, mammary gland and adipose tissue. It is the main regulatory enzyme that catalyzes the synthesis of long chain fatty acid. As shown in Figure 4a, the expression of ACCα was significantly (p<0.05) lower than other groups. The expression of ACCα was significantly inhibited by D-psicose. This result was in agreement with previous published study where mice were supplemented with high fat diet containing 5% D-psicose15.

3.6.2 FAS

Fatty acid synthase (FAS) is the enzyme that catalyzes the synthesis of fatty acids. The activity of FAS had a direct impact on the synthesis of fatty acid in the body. It played a very important role in lipid metabolism. As the FAS activity increases, extra free fatty acid can form fat, thus resulting in the accumulation of fat in the body. It was reported when blood TG increase, the FAS expression also increase. With the
improvement of FAS expression, TG will also accumulate and lead to obesity. As shown in Figure 4b, the D-psicose group had lowest (p<0.05) FAS level. The mRNA expression of FAS was significantly inhibited by supplementing D-psicose.

3.6.3 HSL

In addition to enzymes participated in lipogenesis, we also determined the effect of D-psicose on enzymes participated in lipolysis. Hormone sensitive lipase (HSL) is one major lipase that catalyze the breakdown of triglyceride, diglyceride and monoglyceride into free fatty acid and glycerol. Its substrates can also be cholesterols and steroids. As the mRNA expression of HSL gene increase, the accumulation of triglyceride in adipose tissue will decrease. As shown in Figure 4c, the HSL level in D-psicose group was higher than other groups. This may indicate supplementation of D-psicose can increase the breakdown of fatty acid in hepatic tissue.

3.6.4 AMPKα2

AMP-activated protein kinase (AMPK) is an enzyme that stimulates the fatty acid oxidation and ketogenesis. It also played an important role in inhibiting cholesterol and triglyceride synthesis. AMPK is made up of three subunits: α, β and γ. The major AMPK expressed in the liver is AMPKα2. As shown in Figure 4d, the mRNA expression of AMPKα2 in D-psicose group was significantly (p<0.05) higher than fructose group and glucose group. It was higher than control group and cellulose group although there was no statistical significance. The result may indicate the...
dietary supplementation of D-psicose can suppress lipid synthesis by activating AMPK pathway.

3.6.5 PPARα

Peroxisome proliferator activated receptors (PPARs) are nuclear transcription factors activated by specific ligands that can induce the expression of lipid metabolism related genes. There are three types of PPAR, including PPARα, PPARβ and PPARγ. The major function of PPARα is to regulate genes involved in fatty acid metabolism. Activation of PPARα can induce mitochondrial fatty acid oxidation and improve hepatic steatosis. Expression of AMPKα2 will lead to fat accumulation in the liver. As shown in figure 4e, the mRNA expression of PPARα in D-psicose group was significantly (p<0.05) higher than other groups. This result may indicate supplementation of D-psicose can activate the expression of PPARα gene, hence increase the fatty acid oxidation in the liver.

3.6.6 SREBP-1c

Sterol regulatory element binding proteins (SREBPs) are a group of lipid synthetic transcription factors existed in endoplasmic reticulum and nuclear envelop. The main function of SREBP is to regulate lipogenesis and maintain homeostasis. SREBPs can activate at least 30 genes that was associated with lipid metabolism pathway including FAS. There are three types of SREBPs, i.e., SREBP-1a SREBPs-1c and SREBPs-2. Among which, SREBP-1 was mainly expressed in liver, skeletal muscle, adipose tissue and spleen. SREBP-1c is the major form of SREBP-1 in the liver. As
shown in Figure 4f, the expression of SREBP-1c was significantly (p<0.05) induced by fructose. This may suggest fructose could increase the SREBP-1c, which will increase the production of free fatty acid. In the meantime, D-psicose group was shown to suppress the expression of SREBP-1c, leading to a reduced triglyceride content in the liver which would result in less fat accumulation.

In summary, D-psicose can increase the mRNA expression of AMPK - an important enzyme in modulating glucose and fat metabolism. When AMPK phosphorylates SREBP-1c, fatty acid synthesis was inhibited. The expression of fatty acid synthesis related genes including ACCα and FAS were significantly decreased (p<0.05). In the meantime, supplementation of D-psicose can suppress the expression of PPARα and lead to increased β-oxidation. In addition, activation of AMPKα2 can induce the expression of HSL, which contributes to lipolysis. Taken together, D-psicose contribute to least body weight increase by inhibiting expression of fatty acid synthesis related genes and increasing expression lipolysis related genes.

Several recent studies also reported D-psicose could prevent lipid metabolism by regulating target genes. Kim found D-psicose can up-regulate β-oxidation related genes including Abcd2, CPT1 and HSL in C57BL/6J-ob/ob mice. However, Han reported D-psicose may decrease body weight by decreasing the mRNA expression of CD36, ApoB48, FATP4 in small intestine, while downregulating the fatty acid synthase and β-oxidation in the liver. In addition to the regulation of lipid metabolism, Kim et al. also reported that the ability of D-psicose to change
inflammatory response networks might contribute to its anti-obesity potential. Genes related to obesity induced inflammation such as TNF-α (tumor necrosis factor-alpha) and IL-6 (interleukin-6) were suppressed by supplementation D-psicose. More study needed to be carried out before identifying the specific mechanism of its anti-obesity potential. Further studies should focus on the elucidating of D-psicose anti-obesity potential from a comprehensive perspective.

4 Conclusion

In this study, we evaluated the effect of D-psicose on rat body weight gain, lipid profile and lipid metabolism related activities compared with other four carbohydrates including glucose, fructose and cellulose. Supplementation of D-psicose can inhibit fat accumulation in rats caused by high carbohydrate intake. Rats supplemented with D-psicose had minimum body weight increase, least epididymal fat and adipose cell size. They also had better blood lipid profile and antioxidant capacity. The fat accumulation was slowed down by activation of genes involved in fatty acid synthesis including AMPK2α, HSL and PPARα. At the same time, D-psicose can suppress the expression of genes participated in fatty acid synthesis including ACCα, FAS, SREBP-1c. D-psicose is a healthy low-calorie sweetener that can provide enough sweetness but do not cause lipid metabolism disorder or significant weight increase. These results may contribute to the justification of D-psicose utilization in foods as natural sweetener.
Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgement

This work was supported by National Natural Science Foundation of China (21702076) and China Postdoctoral Science Foundation (2018). This work was supported by National First-class Discipline Program of Food Science and Technology (JUFSTR20180203).
References

sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats, *Biochemical and Biophysical Research Communications*, 2011, **405**, 7-12.

35. S.-M. Jeon, Regulation and function of AMPK in physiology and diseases, Experimental & Molecular Medicine, 2016, 48, e245.

37. K. Schoonjans, B. Staels and J. Auwerx, The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation, *Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism*, 1996, **1302**, 93-109.

Figure 1. Effect of different carbohydrates on rat body weight. Rats were divided into five groups and followed AIN-76A diet containing 5% (w/w) of different carbohydrates (control/corn starch, glucose, fructose, D-psicose and cellulose). The body weight was measured every other day for a total of 28 days.

Table 1. Effects of dietary carbohydrates on the body weight and organ weight of rats in different groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Control</th>
<th>Glucose</th>
<th>Fructose</th>
<th>D-psicose</th>
<th>Cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight (g)</td>
<td>100±6</td>
<td>101±5</td>
<td>103±4</td>
<td>100±7</td>
<td>102±5</td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>291±16a</td>
<td>272±14ab</td>
<td>288±12a</td>
<td>252±8b</td>
<td>284±15a</td>
</tr>
<tr>
<td>Weight gain (g)</td>
<td>192±12a</td>
<td>171±12b</td>
<td>184±10ab</td>
<td>152±3c</td>
<td>181±10ab</td>
</tr>
<tr>
<td>Food intake (g/day)</td>
<td>25.7±3.1b</td>
<td>28.2±2.4b</td>
<td>28.3±4.4b</td>
<td>29.1±1.7b</td>
<td>34.1±2.7a</td>
</tr>
</tbody>
</table>

Organ weight

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver (g)</td>
<td>10.3±0.9a</td>
<td>8.8±0.6b</td>
<td>9.5±0.4ab</td>
<td>9.1±0.4b</td>
<td>9.0±0.5b</td>
</tr>
<tr>
<td>Heart (mg)</td>
<td>958±67</td>
<td>940±87</td>
<td>1058±82</td>
<td>946±50</td>
<td>1060±101</td>
</tr>
<tr>
<td>Soleus (mg)</td>
<td>110±17</td>
<td>136±27</td>
<td>118±13</td>
<td>106±15</td>
<td>104±15</td>
</tr>
<tr>
<td>Abdominal fat (g)</td>
<td>2.6±0.3a</td>
<td>2.2±0.5a</td>
<td>2.7±0.9a</td>
<td>1.2±0.3b</td>
<td>2.5±0.4a</td>
</tr>
<tr>
<td>Epididymal fat (g)</td>
<td>6.7±0.4a</td>
<td>5.2±1.0a</td>
<td>6.3±0.7a</td>
<td>3.4±0.3b</td>
<td>6.5±1.3a</td>
</tr>
</tbody>
</table>
All data are expressed as mean ± SE (n=6). Data with different letters indicate statistical difference (p<0.05).

Table 2. Effects of dietary carbohydrates on rat blood lipids.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Glucose</th>
<th>Fructose</th>
<th>D-psicose</th>
<th>Cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG (mmol/L)</td>
<td>1.42±0.48a</td>
<td>1.36±0.23ab</td>
<td>0.94±0.27ab</td>
<td>0.83±0.11b</td>
<td>1.20±0.31ab</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>3.46±0.90</td>
<td>2.92±0.77</td>
<td>2.41±0.69</td>
<td>3.31±0.76</td>
<td>3.54±0.68</td>
</tr>
<tr>
<td>FFA (mmol/L)</td>
<td>0.94±0.21a</td>
<td>0.60±0.06b</td>
<td>0.58±0.07b</td>
<td>0.42±0.04b</td>
<td>0.94±0.07a</td>
</tr>
<tr>
<td>LDL-C (mmol/L)</td>
<td>0.58±0.10a</td>
<td>0.53±0.07ab</td>
<td>0.39±0.10bc</td>
<td>0.38±0.05c</td>
<td>0.27±0.04c</td>
</tr>
</tbody>
</table>

All data are expressed as mean ± SE (n=6). Data with different letters indicate statistical difference (p<0.05). TG, triglyceride; TC, total cholesterol; FFA, free fatty acid; LDL-C, low density lipoprotein-cholesterol.

Table 3. Serum and hepatic level of SOD and CAT.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Glucose</th>
<th>Fructose</th>
<th>D-psicose</th>
<th>Cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD (U/mL)</td>
<td>326.3±23.2a</td>
<td>322.6±15.4ab</td>
<td>296.3±24.4b</td>
<td>352.2±16.6c</td>
<td>335.4±18.2ab</td>
</tr>
<tr>
<td>CAT (U/mL)</td>
<td>6.03±0.47c</td>
<td>6.33±0.62bc</td>
<td>6.47±0.63bc</td>
<td>14.42±0.70a</td>
<td>7.84±0.72b</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD (U/mg prot)</td>
<td>323.2±35.1</td>
<td>348.3±37.7</td>
<td>335.4±35.8</td>
<td>383.3±39.9</td>
<td>326.5±31.1</td>
</tr>
<tr>
<td>CAT (U/mg prot)</td>
<td>10.31±1.23b</td>
<td>10.69±1.54b</td>
<td>11.62±1.71b</td>
<td>27.39±1.49a</td>
<td>13.58±1.30b</td>
</tr>
</tbody>
</table>

SOD, superoxide dismutase; CAT, catalase. All data are expressed as mean ± SE (n=6). Data with different superscript letters indicate statistical difference (p<0.05).

Table 4. Serum and hepatic level of SDH and HL.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Glucose</th>
<th>Fructose</th>
<th>D-psicose</th>
<th>Cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDH (U/mL)</td>
<td>21.33±3.21b</td>
<td>21.67±4.73b</td>
<td>19.67±4.93b</td>
<td>35.00±5.00a</td>
<td>22±4.00b</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDH (U/mg prot)</td>
<td>2.72±0.80b</td>
<td>3.15±1.11ab</td>
<td>2.96±1.16ab</td>
<td>5.42±0.94a</td>
<td>3.59±0.84ab</td>
</tr>
<tr>
<td>HL (U/mg prot)</td>
<td>1.33±0.28</td>
<td>1.21±0.34</td>
<td>1.44±0.33</td>
<td>1.69±0.37</td>
<td>1.37±0.29</td>
</tr>
</tbody>
</table>

SDH, succinate dehydrogenase; HL, hepatic lipase. All data are expressed as mean ± SE (n=6). Data with different superscript letters indicate statistical difference (p <0.05).
Figure 2. The effect of D-psicose on hepatic tissue morphology of rats supplemented with different carbohydrates (by HE stain × 400). (a) control group, (b) glucose group, (c) fructose group, (d) D-psicose group, (e) cellulose group. Representative image from each group was used.

Figure 3. The effect of D-psicose on adipose tissue morphology of rats supplemented with different carbohydrates (by HE stain × 400). (a) control group, (b) glucose group, (c) fructose group, (d) D-psicose group, (e) cellulose group. Representative image from each group was used.
Figure 4. Effect of different sugars on RNA expression of enzymes participated in lipid synthesis and metabolism. (a) ACCα, (b) FAS, (c) HSL, (d) AMPKα2, (e) PPARα, (f) SREBP-1c. All values are means ± SE (n=6). Different letters indicate statistical difference (P<0.05). ACCα: acetyl-CoA carboxylase; FAS, fatty acid synthase; HSL, hormone sensitive lipase; AMPK, AMP-activated protein kinase; PPAR, peroxisome proliferator activated receptors; SREBP, sterol regulatory element binding proteins.
Dietary supplementation of D-psicose could slow down fat accumulation in rats by regulating lipid metabolism related genes.