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Background: p-Allulose, an epimer of p-fructose, is a rare monosaccharide that exists in extremely small
quantities in nature. It is an ideal substitute for sucrose, because it has 70% of the sweetness of sucrose
and ultra-low the energy. In addition, it has received sustained attention because of its unique physio-
logical functions and potential health benefits. However, it is scarce in nature, and difficult to chemically
synthesize.

Scope and approach: Because of its scarcity, bioconversion of p-allulose is attractive to researchers. It has
been demonstrated that ketose 3-epimerase plays an irreplaceable role in the bioconversion of p-fructose
to p-allulose. Herein, an overview of recent advances regarding the physiological functions as well as the
biological production of p-allulose is provided. Additionally, a comparison of the biochemical properties
and a structural analysis of ketose 3-epimerases are also reviewed in detail in this paper.

Key findings and conclusions: Up to now, ketose 3-epimerase has been experimentally identified and
characterized from only twelve types of microorganisms. In addition, 4 types of crystal structures from
ketose 3-epimerases have been already solved, and the catalytic mechanism has also been proposed.
However, the researches on molecular modification of ketose 3-epimerase are very few. In the future,
molecular modification to improve the enzyme activity and thermostability through site-directed
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mutagenesis or directed evolution must be the research focus.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, the prevalence and incidence of diseases related to
excessive weight gain, such as obesity, diabetes, hypertension and
hyperlipidemia, have dramatically increased throughout the world.
The main explanation given for this increase is the excessive con-
sumption of high-fat and high-sugar foods. In 2014, the World
Health Organization (WHO) released a guideline on the intake of
sugars, suggesting that daily intake should be controlled below 5%
for additional benefits. However, this target is difficult to achieve
(Hossain, Yamaguchi, Matsuo, et al., 2015). As a result, low-calorie
rare sugars, which are defined as “monosaccharides and their de-
rivatives that are rare in nature” by the International Society of Rare
Sugars in 2002 (Granstrom, Takata, Tokuda, & Izumori, 2004), have
attracted the attention of many researchers.
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p-Allulose (D-ribo-2-hexulose or p-psicose) is a novel low-
calorie functional rare sugar and the epimerization product of p-
fructose at the C-3 position. p-Allulose is also called p-psicose, and
the name “psicose” is derived from the antibiotic psicofuranine,
from which it was isolated (Eble, Hoeksema, Boyack, & Savage,
1959). It is an ultra-low calorie sweetener and ideal substitute for
sucrose with 70% of the sweetness. Most of p-allulose is absorbed in
the small intestine and excreted from the body via the urine.
Moreover, it is likely to be inert in terms of energy metabolism (lida
et al,, 2010).

p-Allulose has distinct physiological functions, such as anti-
hyperglycemic effects (Hayashi et al., 2010), anti-hyperlipidemic
effects (Matsuo et al., 2001), anti-inflammatory effects (Moller &
Berger, 2003), neuroprotective effects (Takata et al., 2005), reac-
tive oxygen species (ROS) scavenging activity (Suna, Yamaguchi,
Kimura, Tokuda, & Jitsunari, 2007), and therapeutic effects
against atherosclerosis (Murao et al., 2007). Moreover, it also im-
proves the gelling properties of food, increases the pleasantness of
the flavor of food, and reduces the extent of oxidation occurring
through the Maillard reaction during food processing (Oshima,
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Kimura, Kitakubo, Hayakawa, & Izumori, 2014; Zeng, Zhang, Guan,
Zhang, & Sun, 2013). In 2014, p-allulose was designated as generally
regarded as safe (GRAS) by the US Food and Drug Administration
(FDA, GRN No. 498). An application for the use of p-allulose as a
food product for Specified Health Uses (FOSHU) has been submitted
to the Japanese Ministry of Health, Labour, and Welfare (Hossain,
Yamaguchi, Hirose, et al., 2015).

p-Allulose is rarely encountered in nature, and is difficult to
chemically synthesize. Prof. Ken Izumori (Kagawa University Rare
Sugar Research Centre) developed a strategy for the preparation of
all hexoses using cheap and widely available substrates (Izumori,
2006). According to the strategy, p-allulose could be converted
from p-fructose via ketose 3-epimerase. In this review, we focus on
the recent advances relating to the physiological function of p-
allulose, as well as biochemical properties and structural informa-
tion of ketose 3-epimerase. The production of p-allulose by
fermentation as well as immobilization and modifications and are
also reviewed in this paper.

2. Brief introduction of D-allulose
2.1. Chemical structure

p-Allulose (or p-psicose) is a rare monosaccharide and a bioac-
tive p-fructose epimer, which is the epimerization product of p-
fructose at the C-3 position. It is systematically named as D-ribo-2-
hexulose by the International Union of Pure and Applied Chemistry
(IUPAC). The molecular formula and molecular weight of p-allulose
(CAS No. 551-68-8) are CgH1206 and 180.16 g/mol, respectively. It is
prepared as a white, odorless, crystalline powder via the ortho-
rhombic system, and crystallizes solely as f-p-pyranose with the 1C
('C4 (D)) conformation (Fukada et al., 2010). p-Allulose, which
contains one ketone group, acts as a reducing p-ketose.

2.2. Existing sources

p-Allulose is very rare in nature, and is found in small quantities
in Itea and wheat, which are its few plant source (Ayers et al., 2014;
Miller & Swain, 1960), and in certain bacteria (Zhang, Mu, Jiang, &
Zhang, 2009). p-Allulose is not present in animals. However, it has
been found in various foodstuffs, such as commercial mixtures of p-
glucose and p-fructose (Cree & Perlin, 1968), steam-treated coffee
(Luger & Steinhart, 1995), processed cane and beet molasses,
(Binkley & Wolfrom, 1952; Thacker & Toyoda, 2008), and fruit juice
with a long-term heating process (Oshima, Kimura, & Izumori,
2006). The psicose contents in various foodstuffs were closely
related to the sugar concentration, temperature and heating time
during manufacturing processes (Oshima et al., 2006).

2.3. Chemical synthesis

In previous reports, p-allulose could be produced by chemical
synthesis, including synthesis from 1,2:4,5-di-O-isopropylidene-b-
p-fructopyranose (McDonald, 1967), synthesis from b-fructose
through a molybdate ion catalyst (Bilik & Tihlarik, 1973) or boiling
in ethanol and trimethylamine (Doner, 1979). In 2005, Soengas et al.
reported a new method of p-Allulose synthesis by the Kiliani-
acetonation sequence, which could achieve an overall yield of 41%
(Soengas et al., 2005). However, all these chemical syntheses have
disadvantages, including the sophisticated purification processes
required, and the formation of chemical waste and byproduct. As a
result, the biological production of p-allulose has gained attention,
and the separation of p-allulose and p-fructose was achieved using
simulated moving bed chromatography. According to the simula-
tion of the simulated moving bed (SMB) process, the complete

separation purity of p-allulose could reach 99.36% (Long, Le, Kim,
Lee, & Koo, 2009).

3. Excellent physiological functions
3.1. Absorption and metabolism in organisms

The absorption and metabolism of p-allulose was investigated
by rat experiments using '“C-labelled p-allulose. It was found that,
approximately 70% of the p-allulose was absorbed in the small in-
testine without being metabolized into energy and then eliminated
via urine within 24 h (Hossain, Yamaguchi, Matsuo, et al., 2015;
Matsuo, Tanaka, Hashiguchi, Izumori, & Suzuki, 2003). Moreover,
a small part of p-allulose was transferred to the large intestine, and
seldom fermented in the appendix of rats and humans (lida et al.,
2010). Following single-dose oral administration of 100 mg/kg, p-
allulose easily moved to the blood, and 19% and 37% of the
administered dose was determined in rats at 1 and 2 h. The residual
p-allulose was almost entirely excreted within 7 days. In contrast,
following intravenous administration, the excretion to urine was
almost 50% within 1 h. Interestingly, p-allulose accumulation could
be detected in the liver, kidney, and urinary bladder, but not in
brain (Tsukamoto et al., 2014).

Monosaccharide uptake and efflux in enterocytes of the human
intestinal are mediated by different sugar transporters, which
separately located on the brush border membrane and in the
basolateral membrane. p-glucose uptake is mediated by the active
transporter SGLT1 (sodium-dependent glucose co-transporter 1),
while p-allulose as well as the p-fructose, enters into enterocytes
via the passive transporter GLUT5 (glucose transporter 5) (Hishiike
et al., 2013). It is interesting that p-glucose, p-fructose and p-allu-
lose are effluxed by the same transporter GLUT2 (glucose trans-
porter 2).

3.2. Health benefits

It was reported that the absorption rate of p-allulose is lower
than that of other sweeteners, especially p-glucose. In addition, p-
allulose could reduce the absorption of dietary p-fructose and p-
glucose by competitive inhibition of the influx and efflux trans-
porter (Hossain, Yamaguchi, Matsuo, et al., 2015). GLUT2 and
GLUT5 are distributed not only in the intestine but also in other
tissues and cells. The suppressive uptake of p-glucose and p-fruc-
tose by p-allulose contributed to health benefits, such as enhancing
insulin resistance, reducing body fat accumulation and potentially
producing anti-diabetic effects (Hossain, Kitagaki, et al., 2011;
Ochiai, Nakanishi, Yamada, lida, & Matsuo, 2013).

In the oral glucose tolerance test (OGTT), p-allulose obviously
inhibited the postprandial glycemic responses by reducing intes-
tinal a-glucosidase and a-amylase activities in vitro, which could
delay carbohydrate digestion (Matsuo & Izumori, 2009). Matsuo
et al. also found that dietary p-allulose only increased liver
glycogen, while muscle glycogen did not change as the result of
glucose oxidation in skeletal muscles (Matsuo, Shirai, & Izumori,
2006).

Researchers have discovered the anti-obesity activity of p-allu-
lose by the reducing weight of the adipose tissue weight in animals
and humans (Chung, Lee, et al, 2012; lida et al., 2013; Yagi &
Matsuo, 2009). The anti-obesity functions are not simply due to
reducing food intake but also related to decreasing adipose tissue
weight and fat mass. A potential mechanism was that a p-allulose
diet might enhance fat oxidation and reduce carbohydrate oxida-
tion (Nagata, Kanasaki, Tamaru, & Tanaka, 2015). Additionally, a
variety of studies have already confirmed the anti-hyperlipidemic
effects of np-allulose; however, the anti-hyperlipidemic
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mechanism is still unclear and needs to be studied further studies.
It is speculated that p-allulose affects the activities of lipogenic and
lipolytic enzymes (Matsuo et al., 2001; Ochiai, Onishi, Yamada, lida,
& Matsuo, 2014). Furthermore, p-allulose treatments show bene-
ficial actions on T2DM and B-cell for both short-term and long-term
feeding (Hossain, Yamaguchi, Hirose, et al., 2015; Hossain et al.,
2012).

p-Allulose has other physiological function, such as anti-
inflammatory effects by suppressing proinflammatory cytokines
(Moller & Berger, 2003), neuroprotective effects by elevating the
intracellular glutathione level (Takata et al., 2005), reactive oxygen
species (ROS) scavenging activity (Suna et al., 2007), and thera-
peutic effects against atherosclerosis by inhibiting the expression of
monocyte chemoattractant protein-1 (MCP-1) (Murao et al., 2007).

In recent years, several clinical trials on p-allulose were carried
out on normal and borderline diabetic individuals (Hayashi et al.,
2010; lida et al., 2008). lida et al. reported that the addition of p-
allulose at a ratio of approximately 1:15 (p-allulose: carbohydrate)
could effectively suppress blood glucose elevation. Additionally, a
single ingestion of p-allulose exhibited no impact on blood glucose
and insulin levels, suggesting that p-allulose did not induce hypo-
glycemia (lida et al., 2008).

p-Allulose could not only stimulate translocation of glucokinase
(GK) in the liver but also suppress the increase of plasma glucose
levels which led to the increase of hepatic glucose utilization
(Toyoda et al., 2010). By feeding rats a pellet diet containing p-
allulose, Nagata et al. found that glucose-6-phosphate dehydroge-
nase (G6PDH) activity was significantly reduced, thereby probably
exerting hypolipidemic affects (Nagata et al,, 2015). Besides, accu-
mulating clinical and animal studies indicated that p-allulose had
hypoglycemic activity mediated by increasing GK translocation,
suppressing intestinal a-glucosidase, and protecting against
pancreatic B-cell failure (Chung, Oh, & Lee, 2012).

4. Application of p-allulose

Due to its excellent physiological functions mentioned above, p-
allulose has potential as a pharmaceutical agent in clinical appli-
cations such as the treatment of obesity, diabetes, hypertension,
hyperlipidemia and atherosclerotic diseases. Moreover, p-allulose
could be spray-dried by the addition of excipients, which would be
helpful for pulmonary drug delivery (Kawakami et al., 2013;
Kawakami et al., 2014). Additionally, it is reported that p-allulose
is the precursor of other hexoses and plays an extremely important
role in the production of p-allose (Feng, Mu, & Jiang, 2013; Yeom,
Seo, Kim, & Oh, 2011), D-allitol (Han et al., 2014), D-talitol
(Sasahara, Mine, & Izumori, 1998), b-tagatose (Yoshihara,
Shinohara, Hirotsu, & Izumori, 2006) and p-altrose (Menavuvu
et al,, 2006).

Recently, p-allulose has been approved as GRAS by FDA in USA,
and is permitted to be served as the food ingredient and dietary
supplement (Mu, Zhang, Feng, Jiang, & Zhou, 2012). According to
the toxicity rating chart, it belongs to the “relatively harmless”
category, which is the lowest toxicity rating (Mu et al., 2012).
Hossain et al. also obtained the maximum bp-allulose intake of
0.55 g/kg body weight, without causing diarrhea in humans
(Hossain, Yamaguchi, Matsuo, et al., 2015). Because of its food safety
and unique physiochemical properties (low-calorie and high-
sweetness), p-allulose has promising market potential in the food
industry. Moreover, p-allulose is a reducing sugar, and it could
improve food quality through the Maillard reactions. Among all of
the D-ketoses (p-tagatose, p-sorbose, p-allulose and p-fructose), p-
allulose offered the best overall improvement in the food proper-
ties of egg white protein through the Maillard reactions, such as
excellent gel strength, emulsifying stability, foaming properties,

and antioxidant activities (O'Charoen, Hayakawa, & Ogawa, 2015;
Sun, Hayakawa, Ogawa, Fukada, & Izumori, 2008; Zeng et al.,
2013). For all we know, industrial production of p-allulose has
been achieved in Japan and Korea. Recently, a rare sugar syrup
containing p-allulose has been used as a functional food, and can be
commercially obtained from Matsutani Chemical Industry Co. Ltd.
(Hyogo, Japan).

Furthermore, p-allulose shows many other unique applications.
Like p-tagatose, the addition of p-allulose could cause an elevation
of chitosan synthesis (Yoshihara, Shinohara, Hirotsu, & Izumori,
2003). Plant-based materials derived from p-allulose have
recently been developed and used as permanent, water-repellent,
eco-friendly, light-transparent films for optical devices and liquid
crystal displays (Takei & Hanabata, 2015). p-allulose has also been
identified as the first anthelmintic sugar, and exerts some positive
effects on the inhibition of parasite growth (Harada et al., 2012;
Sato, Kurose, Yamasaki, & Izumori, 2008).

5. Biotechnological production of p-allulose
5.1. Properties of various ketose 3-epimerase

As a result of its extreme rarity in nature and difficult chemical
synthesis, the method of p-allulose biotransformation has attracted
many attentions (Izumori, 2002). Ketose 3-epimerase is placed at
the crucial position in the Izumoring strategy, which has been
schematized for the biological production of all rare sugars.
Moreover, it plays an irreplaceable role in the biological production
of p-allulose, which catalyzes the reversible epimerization at the C-
3 position between p-fructose and p-allulose (Granstrom et al.,
2004; Mu, Yu, Zhang, Zhang, & Jiang, 2015). Currently, ketose 3-
epimerase has been isolated and identified from various microor-
ganisms, in crude, partially purified, completely purified, recom-
binant, or immobilized forms.

5.2. Novel enzyme sources

Although the genes of ketose 3-epimerase are presumed in a
wide range of microorganisms based on the GenBank database
from NCBI, so far, the enzyme has been experimentally identified
and characterized from only twelve types of bacteria (Table 1).
Based on the different optimal substrate, theses twelve ketose 3-
epimerases were divided into p-tagatose 3-epimerase (DTEase), p-
psicose 3-epimerase (DPEase) and i-Ribulose 3-epimerase
(LREase). In 1993, Izumori et al. reported the first characterized
DTEase from Pseudomonas cichorii ST-24, which catalyzed the
reversible epimerization of free ketose sugars and showed the best
substrate specificity for p-tagatose (Itoh et al., 1994; Izumori, Khan,
Okaya, & Tsumura, 1993). The second ketose 3-epimerase was not
determined until Kim et al. reported a novel DPEase from Agro-
bacterium tumefaciens, which could effectively catalyze the isom-
erization of p-allulose from p-fructose (Kim, Hyun, Kim, Lee, & Oh,
2006). In the past ten years, research on ketose 3-epimerases has
been accelerated, and several ketose 3-epimerases have been iso-
lated and identified one after another. The isomerization capacity of
different ketose 3-epimerases varied greatly depending on its mi-
crobial source and reaction conditions, such as reaction tempera-
ture, optimum pH and metal ionic strength.

5.3. Comparison of ketose 3-epimerase

To enhance the catalytic efficiency of ketose 3-epimerase, the
reaction conditions have been optimized, including reaction tem-
perature, pH, and metal ions. A summary of the biochemical
properties from the aforementioned ketose 3-epimerases is shown
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Table 1
Comparison of biochemical properties of various ketose 3-epimerases.
Ketose 3-epimerase  Optimum Optimum pH  Optimum  Substrate Metal Bacterium source References
temperature (°C) metal ion  optimum dependence
A. tumefaciens 50 8.0 Mn?* p-Allulose No Agrobacterium tumefaciens (Kim, Hyun, Kim,
DPEase Lee, & Oh, 2006)
C. cellulolyticum 55 8.0 Co** p-Allulose Yes Clostridium cellulolyticum (Mu et al., 2011)
DPEase H10
Ruminococcus sp. 60 7.5-8.0 Mn?* p-Allulose No Ruminococcus sp. (Zhu et al., 2012)
DPEase 5_1_39BFAA
C. scindens DPEase 60 75 Mn?* p-Allulose Yes Clostridium scindens (Zhang, Fang, Xing,
ATCC 35704 etal,, 2013)
Clostridium sp. 65 8.0 Co?+ p-Allulose Yes Clostridium sp. BNL1100 (Mu et al., 2013)
DPEase
Desmospora sp. 60 75 Co** p-Allulose Yes Desmospora sp. 8437 (Zhang, Fang, Zhang,
DPEase etal., 2013)
C. bolteae DPEase 55 7.0 Co®* p-Allulose Yes Clostridium bolteae (Jia et al., 2014)
ATCC BAA-613
T. primitia DPEase 70 8.0 Co** p-Allulose Yes Treponema primitia ZAS-1 (Zhang et al., 2016)
Dorea sp. DPEase 70 6.0 Co** p-Allulose Yes Dorea sp. CAG317 (Zhang et al., 2015)
P. cichorii DTEase 60 75 None p-Tagatose  No Pseudomonas cichorii ST-24  (Izumori et al.,, 1993)
R. sphaeroides 40 9.0 Mn?* p-Fructose No Rhodobacter sphaeroides (Zhang et al., 2009)
DTEase
M. loti LREase 60 8.0 Mn?* L-Ribulose No Mesorhizobium loti (Uechi, Takata, Fukai,

MAFF303099 Yoshihara, & Morimoto, 2013)

in Table 1 and is discussed below.

5.3.1. Temperature

The optimal temperature for ketose 3-epimerase catalysis varied
from 40 to 70 °C (Table 1). Among all ketose 3-epimerases reported,
DPEase from Treponema primitia as well as DPEase from Dorea sp.,
exhibited the highest optimum temperature of 70 °C (Zhang,
Zhang, Jiang, & Mu, 2016; Zhang et al., 2015), while DTEase from
Rhodobacter sphaeroides showed the lowest optimum temperature
of 40 °C (Zhang et al., 2009). It is generally known that an elevated
operating temperature is required for the industrial production of
rare sugars, because high reaction temperatures could induce
higher reactivity (a higher reaction rate and lower diffusional re-
strictions), lower viscosity, higher stability, higher process yield
(increased solubility of substrates and products and a favorable
equilibrium displacement during endothermic reactions), and less
contamination (Mozhaev, 1993). Nevertheless, operation at tem-
peratures over 70 °C accelerates the non-enzymatic browning re-
action and formation of by-products. Similar to r-arabinose, the
most suitable reaction temperature for p-allulose is 60—70 °C (Xu,
Li, Feng, Liang, & Xu, 2014).

Thermostability is a crucial property of ketose 3-epimerase to
realize the practical production of p-allulose; however, all the
ketose 3-epimerases reported show poor thermostability. Most of
them exhibit relatively high thermostability below 50 °C, and
drastically inactivate at a higher temperature, except for Meso-
rhizobium loti LREase (Uechi, Takata, Fukai, Yoshihara, & Morimoto,
2013). In contrast, the half-life of M. loti LREase at 60 and 70 °C
could reach more than 24 h and 2.3 h, respectively (Uechi,
Sakuraba, Yoshihara, Morimoto, & Takata, 2013). As concluded
through previous reports, the thermostability of ketose 3-
epimerases is related to metal ions. It is noteworthy that the ther-
mostability of some ketose 3-epimerases could be significantly
enhanced by the addition of metal ion cofactor, such as Clostridium
cellulolyticum DPEase, Ruminococcus sp. DPEase, or Clostridium
bolteae DPEase (Jia et al., 2014; Mu et al., 2011; Zhu et al., 2012). In
contrast, adding metal ion (1 mM Co®>*) during the incubation
barely changed the thermostability of Desmospora sp. DPEase,
T. primitia DPEase and Dorea sp. DPEase (Zhang et al., 2016; Zhang,
Fang, Zhang, et al,, 2013; Zhang et al,, 2015). In addition, the ther-
mostability might be increased through molecular modification.

For example, when compared with the wild-type enzyme, the I33L/
S213C double-site variant of A. tumefaciens DPEase showed not only
remarkably improvement in thermostability but also an optimal
temperature, half-life, and melting temperature (Choi, Ju, Yeom, &
Oh, 2011).

53.2. pH

Most often, commercial production of rare sugars is best carried
out in acidic conditions. It is well known that, under alkaline con-
ditions, non-enzymatic browning of carbohydrates is extremely
accelerated, while in slightly acidic conditions the browning effect
and unwanted by-product formation are notably suppressed and
reduced, which need to be excluded at the end of the reaction.
Several acidic L-arabinose and p-xylose isomerases have already
been isolated and characterized using screening and molecular-
modification techniques (Mu et al., 2015). Nevertheless, there are
few similar studies on ketose 3-epimerases, and most of the re-
ported ketose 3-epimerases show optimal activity and a relatively
wide pH spectrum under weakly alkaline conditions (pH 7.5 to 9.0).
In the past two years, the neutral C. bolteae DPEase (pH 7.0) and the
acidic Desmospora sp. DPEase (pH 6.0) have been characterized in
our research group through a screening method (Jia et al., 2014;
Zhang et al, 2015). Dorea sp. DPEase displayed significantly
higher productivity (803 U/mg) of p-allulose in acidic conditions
compared to other reported DPEases, suggesting that it has
tremendous potential in industrial applications of p-allulose.

5.3.3. Metal ions

Previous findings have found that metal ions play a critical role
in isomerization of ketose 3-epimerases. Different types of metal
ions have various impacts on the enzyme activity of ketose 3-
epimerases. Some Kketose 3-epimerases are strictly metal-
dependent, which displayed null enzyme activity in the absence
of any metal ions. For C. cellulolyticum DPEase, C. bolteae DPEase,
Clostridium sp. DPEase, Desmospora sp. DPEase, T. primitia DPEase
and Dorea sp. DPEase, metal ion is an essential cofactor for catalysis
(Jiaetal, 2014; Mu et al.,, 2011; Mu et al,, 2013; Zhang, Fang, Zhang,
et al., 2013; Zhang et al., 2015; Zhang et al., 2016); they required
Co?* as the optimum metal ion. Clostridium scindens DPEase is also
metal-dependent, but the optimum metal ion is Mn?* (Zhang, Fang,
Xing, et al., 2013). In contrast, other ketose 3-epimerases do not
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require any metal ions for their activity, but the presence of Co®>* or
Mn?* could remarkably improve their catalytic efficiency. Cu®*,
Zn?*, as well as EDTA, which exists as a metal chelator, could
significantly inhibit the catalytic activity of most ketose 3-
epimerases, except for P. cichorii DTEase and M. loti LREase.

The concentration of metal ions can also influence the enzyme
activity. Previous studies have investigated the precise effects of the
metal ion concentration on the catalysis activity of ketose 3-
epimerases such as C. scindens DPEase, C. bolteae DPEase, Clos-
tridium sp. DPEase and T. primitia DPEase. The overall results were
visualized as an S-shaped curve. At extremely low concentrations of
metal ions, the enzyme activity was undetectable, most likely
because the enzymes required a certain amount of metal ions to
bind the metal cofactor effectively. After that, the enzyme activity
enhanced steeply with the increase in concentration of metal ions,
in agreement with a first order reaction; as the concentration
increased, the activity tended to be stationary. A similar result
appeared in another metal-dependent Geobacillus stear-
othermophilus L-arabinose isomerase (Lee et al., 2005).

Metal ions might be related to the stability of ketose 3-
epimerases, including thermostability and structural stability. As
mentioned above, the thermostability of C. cellulolyticum DPEase,
Ruminococcus sp. DPEase, and C. bolteae DPEase could be signifi-
cantly enhanced by the addition of metal ions, with half-life (t1/2)
values increasing at least to 2.6-fold. In addition, Mn®** improved
the structural stability of C. scindens DPEase during both heat- and
urea-induced unfolding processes, with the apparent melting
temperature (Ty,) and the urea mid-transition concentration (Cp,)
increasing by 6.1 °C and 2.68 mM, respectively (Zhang, Fang, Xing,
et al,, 2013).

5.34. Substrate specificity and kinetic parameters

For almost all ketose 3-epimerases, except M. loti LREase, the
optimal substrate was ketohexose. Nine p-psicose 3-epimerases
displayed optimum substrate specificity for bp-allulose, while
P. cichorii DTEase and R. sphaeroides DTEase showed the best sub-
strate specificity for p-tagatose and p-fructose, respectively. Inter-
estingly, for M. loti LREase, L-ribulose is the optimal substrate, this is
the only report on a ketose 3-epimerase showing the highest

activity towards ketopentose. The kinetic parameters of ketose 3-
epimerases are also important parameters for p-allulose biotrans-
formation. The catalytic efficiency (kcat/Km) values of the above-
mentioned ketose 3-epimerases have been compared in Table 2.
Although the amino acid sequence homology of DPEases is
considerably high, significant differences are shown in the
Michaelis constant (K, ). The Ky, values for p-fructose and p-allulose
are estimated in the range from 24 to 549 mM, and from 12 to
228 mM, respectively. As for the kc,:/Kmy, values, Dorea sp. DPEase
shows the maximal keai/Km values for p-allulose and p-fructose,
with 412 and 199 mM~! min~",

5.4. Structural analysis and molecular modification

5.4.1. Overall structures

Multiple sequence alignment of amino acids from ketose 3-
epimerases was performed and shown in Fig. 1. Although all
these enzymes can produce p-allulose from p-fructose, the amino
acid sequence homology among them varied considerably from
23.9 to 94.2% (Table 3). To date, 4 types of crystal structures from
ketose 3-epimerases were already solved, including A. tumefaciens
DPEase (Protein Data Bank, PDB: 2HKO), P. cichorii DTEase (PDB:
2QUL), C. cellulolyticum DPEase (PDB: 3VNI) and M. loti LREase
(PDB: 3VYL). A. tumefaciens DPEase, C. cellulolyticum DPEase and
M. loti LREase were confirmed to be tetrameric structures, while
P. cichorii DTEase assembled into a dimeric structure (Fig. 2).
Nevertheless, as demonstrated in Fig. 3, their monomer structures
were extremely similar. Each subunit showed a formation as a TIM-
like (B/a.)g barrel fold with a metal ion in the active site. The metal-
binding sites are shown as an octahedral coordination with two
water molecules and four residues which were completely
conserved across all ketose 3-epimerases. Notably, the volume size
of the .8 helix and the C-terminal tail was much bigger in M. loti
LREase than those in other ketose 3-epimerases, leading to the
unique formation of further intermolecular interactions. Through
mutation experiments deleting some C-terminal residues, it was
found that the existence of a long C-terminal tail was integrant for
the dramaticlly thermostability of M. loti LREase (Uechi, Sakuraba,
et al,, 2013).

Table 2
Comparison of kinetic parameters of various ketose 3-epimerases.
Ketose Equilibrium ratio Specific Keat (min~1) K (mmol L) keat/Km (min~! L mmol  References
3-epimerase between p-allulose  activity =13
and p-fructose (Umg'y?
p-allulose  p-fructose p-allulose p-fructose p-allulose  bp-fructose

A. tumefaciens 33:67 (40 °C) 8.9 2381 2068 12 24 205 85 (Kim, Hyun, Kim,
DPEase Lee, & Oh, 2006)

C. cellulolyticum 32:68 (55 °C) 287.0 32435 33545 174 535 186.4 62.7 (Mu et al,, 2011)
DPEase

Ruminococcus sp. 28:72 (60 °C) 8.9 2427 3562 48 216 51 16 (Zhu et al., 2012)
DPEase

C. scindens DPEase  28:72 (50 °C) 171.0 1827 350 283 40.1 64.5 8.72 (Zhang, Fang, Xing,

etal,, 2013)

Clostridium sp. 28:72 (65 °C) 249.5 32,185 16,372 227.6 279 141 58.7 (Mu et al,, 2013)
DPEase

Desmospora sp. 30:70 (60 °C) 252.1 5157.8 63,573 813 549 327 116 (Zhang, Fang,
DPEase Zhang, et al., 2013)

C. bolteae DPEase 32:68 (60 °C) 150.7 2490 3540 274 59.8 107 59 (Jia et al., 2014)

T. primitia DPEase ~ 28:72 (70 °C) 2349 30,166 17,573 209 279 144 63 (Zhang et al., 2016)

Dorea sp. DPEase 30:70 (70 °C) 803.5 78,692 30,447 191 153 412 199 (Zhang et al., 2015)

P. cichorii DTEase ~ 20:80 (30 °C) NR” NR NR NR NR NR NR (Izumori et al., 1993)

R. sphaeroides 23:77 (40 °C) NR NR NR NR NR NR NR (Zhang et al., 2009)
DTEase

M. loti LREase NR 4.0 0.34 NR 58 NR 5.4 NR (Uechi, Takata, Fukai,

Yoshihara, & Morimoto, 2013)

2 The specific activity values were determined with p-fructose as substrate.
b NR, not reported.



132 W. Zhang et al. / Trends in Food Science & Technology 54 (2016) 127—137
g1 0l al g2 o2 o3 B3
A. tumefaciens DPEase — 0 0 0 O —p- 0 0 0 Q 0..000000000000 —_—
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T. primitia DPEase E|G| DE|VINHP (o}
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Fig. 1. Multiple sequence alignment of amino acids from ketose 3-epimerases. The microorganism origins of ketose 3-epimerases with the GenBank accession numbers as follows:
A. tumefaciens DPEase (AAK88700.1), C. cellulolyticum DPEase (ACL75304), P. cichorii DTEase (BAA24429), M. loti LREase (BAB50456), Dorea sp. DPEase (CDD07088), T. primitia
DPEase (WP_010256447), C. bolteae DPEase (EDP19602), Ruminococcus sp. DPEase (ZP04858451), C. scindens DPEase (EDS06411.1), Clostridium sp. DPEase (WP_014314767), Des-
mospora sp. DPEase (WP_009711885.1), and R. sphaeroides DTEase (AC059490). The alignment was prepared using the program ESPript.

Table 3
Comparison of amino acid sequence homology of ketose 3-epimerases.”

Enzyme Amino acid sequence homology (100%)
Agtu Clce Rusp Clsc Clsp Desp Clbo Trpr Dosp Psci Rhsp Melo
Agtu 100
Clce 60.9 100
Rusp 50.5 52.3 100
Clsc 59.0 61.9 52.8 100
Clsp 61.3 94.2 529 62.6 100
Desp 49.8 49.8 48.8 50.4 50.9 100
Clbo 49.5 52.9 62.5 51.7 54.0 474 100
Trpr 55.4 58.4 62.5 55.0 59.3 523 68.0 100
Dosp 59.0 60.6 52.1 78.2 61.3 50.4 524 56.1 100
Psci 39.6 424 337 394 42.40 420 36.0 35.1 38.0 100
Rhsp 31.6 294 27.7 31.6 298 27.7 30.6 29.0 31.2 29.7 100
Melo 28.2 26.0 239 26.0 26.1 25.0 24.6 271 26.3 303 326 100

2 Agtu (A. tumefaciens DPEase, Genbank no. AAL45544), Clce (C. cellulolyticum DPEase, ACL75304), Rusp (Ruminococcus sp. DPEase, ZP_04858451), Clsc (C. scindens DPEase,
EDS06411.1), Clsp (Clostridium sp. DPEase, WP_014314767), Desp (Desmospora sp. DPEase, WP_009711885.1), Clbo (C. bolteae DPEase, EDP19602), Trpr (T. primitia DPEase,
WP_010256447), Dosp (Dorea sp. DPEase, CDD07088), Psci (P. cichorii DTEase, BAA24429), Rhsp (R. sphaeroides DTEase, ACO59490), Melo (M. loti LREase, BAB50456).



W. Zhang et al. / Trends in Food Science & Technology 54 (2016) 127—137 133

©

Fig. 2. Stereo views of the overall structures of reported apo-form ketose 3-epimerases. (A) A. tumefaciens DPEase (PDB: 2HKO); (B) C. cellulolyticum DPEase (PDB: 3VNI); (C)
P. cichorii DTEase (PDB: 2QUL); (D) M. loti LREase (PDB: 3VYL). Subunits Mol A, Mol B, Mol C and Mol D were shown in red, orange, yellow and cyan, respectively. The stereo views
were illustrated by the program PyMol. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Interestingly, two p-tagatose 3-epimerase-related proteins from
Thermotoga maritima and Methanocaldococcus jannaschii were
already determined (Sakuraba, Yoneda, Satomura, Kawakami, &
Ohshima, 2009; Uechi, Takata, Yoneda, Ohshima, & Sakuraba,
2014). The main-chain coordinates of the subunit from both of
the p-tagatose 3-epimerase-like proteins were found to be similar
to those of the ketose 3-epimerases. However, the active-site ar-
chitectures of the two enzymes differed completely from the ketose
3-epimerases.

5.4.2. Catalytic mechanism

Based on the crystal structure and mutant analysis for the two
Glu residues of A. tumefaciens DPEase, Kim et al. proposed a cata-
lytic mechanism where one of the two Glu residues coordinated
with Mn?* removed a proton from C-3 to form a cis-enediolate
intermediate firstly, and immediately another Glu residue proton-
ated C-3 in the opposite direction (Kim, Kim, Oh, Cha, & Rhee,
2006). After that, Yoshida et al. solved the crystal structure of
P. cichorii DTEase, and proposed a C3—03 proton-exchange mech-
anism. During substrate binding, the Glu246 residue removed a
proton from C-3 to generate a cis-enediolate intermediate with the
plane structure of 02—C2—C3—03. Then, proton possibly trans-
ferred from Glu246 to Glul52 via O3, which was in the cis-ene-
diolate intermediate. At last, the Glu152 protonated C-3, and the
two Glu residues reached the negatively ionized state (Yoshida
et al., 2007). In 2012, Chan et al. successfully crystallized both
substrate-bound and product-bound complex structures of

C. cellulolyticum DPEase, which gave more evidence of the C3—03
proton-exchange mechanism and offered a clear method for the
deprotonation/protonation effects of Glu150 and Glu 244 in the
isomerization process (Chan et al., 2012).

5.4.3. Active site and substrate binding

The active sites of these ketose 3-epimerases were shown in
Fig. 4. The Mn?* ion was octahedrally coordinated by two water
molecules and four residues (Glu, Asp, His and Glu) that were
strictly conserved in all of the other ketose 3-epimerases. In addi-
tion, three residues (Glu, His and Arg), which were related with
interactions between the enzymes and O-1, 0-2 and O-3 of b-
fructose, were also strictly conserved. In contrast, as displayed in
Table 4, the amino-acid residues providing a hydrophobic envi-
ronment around the 0-4, O-5 and 0-6 positions of p-fructose were
significantly different in the these enzymes and led to distinction in
specificity and affinity for substrates binding. The electron density
for the bound p-fructose at the C-1 to C-3 positions was explicit, and
the discovered eclipsed configuration of O-2 and O-3 suggested a
rotation of the C2—C3. However, the electron density for the C-4 to
C-6 region of the bound bp-fructose, especially for the hydroxyl
groups 0-4, 0-5, and 0-6, maintained relatively disordered. Ac-
cording to the mutant analysis of A. tumefaciens DPEase, Kim et al.
proposed that three residues were essential elements for catalytic
activity and p-fructose binding as well as p-allulose binding,
including Trp112 with a ring, Glu156 with the negative charge, and
Arg215 with the positive charge. Furthermore, [le66 was involved
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Fig. 3. The superimposition of subunits from A. tumefaciens DPEase (gray), (B)
C. cellulolyticum DPEase (cyan), (C) P. cichorii DTEase (yellow), and (D) M. loti LREase
(warmpink). The stereo views were illustrated by the program PyMol. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

in substrate recognition, and Ala107 located in the B-turn region
was be related to the thermostability (Kim, Lim, et al., 2010; Kim,
Yeom, et al., 2010).

Upon substrate binding with A. tumefaciens DPEase, a significant
change was

ligand-induced  conformational discovered.

Particularly, the side-chains of Trp112 located in the loop p4-04
moved towards the substrate, which served as a lid and shut down
the active site (Kim et al., 2006). In contrary, no ligand-induced
conformational change was observed in substrate binding with
P. cichorii DTEase and C. cellulolyticum DPEase. In P. cichorii DTEase,
Pro117 located in the loop was stuck in the middle of Trp160 and
Trp262 of the neighboring subunit, leading to efficient hydrophobic
interactions in the intersubunit contact area that could hinder the
conformational changes of the loop (Yoshida et al., 2007). At the
present stage, the structure of the M. loti LREase substrate complex
was not yet determined. It was speculated that the substrate-
induced shift of Tyr39 might occur. Moreover, the mutant anal-
ysis of Try39 suggested that Tyr39 was not necessary for main-
taining the substrate affinity, but was actually important for proper
isomerization. The relatively small size of hydrophobic pocket
around the substrate probably was the major reason for the unique
specificity for ketopentoses by M. loti LREase (Uechi, Sakuraba,
etal., 2013).

5.4.4. Molecular modification and directed evolution

In recent years, molecular modification technology had been
widely applied to L-arabinose isomerase and p-glucose isomerase,
and some desirable mutants had already been obtained. However,
there were very few similar studies on the molecular modification
of ketose 3-epimerases. In 2011, by utilizing the random and site-
directed mutagenesis, the double-site [33L/S213C variant of
A. tumefaciens was gained, which displayed excellent improvement
in the thermostability, including optimal temperature, half-life and
melting temperature (Choi et al., 2011). Recently, Bosshart et al.
reported the directed divergent evolution of the thermostable
variant (Var8) of P. cichorii DTEase into two efficient epimerizations
at the C-3 position, such as p-fructose to p-allulose and L-sorbose to
L-tagatose. By iterative randomization and screening around the
substrate-binding site, the eight-site mutant IDF8 and the six-site
mutant ILS6 were achieved. Compared to Var8, IDF8 showed 9-
fold improved kg, for the epimerization of p-fructose, while ILS6
14-fold improved kca¢ for the epimerization of L-sorbose (Bosshart,
Hee, Bechtold, Schirmer, & Panke, 2015). All these mutants
mentioned above might have a great potential in the industrial
production of p-allulose.

5.4.5. Bioproduction of p-allulose

Ketose epimerization is generally regarded as reversible and
equilibrium reactions. As depicted in Table 2, for most ketose 3-
epimerases, the maximum equilibrium ratio between p-fructose

Tepli2

Fig. 4. The active sites in ketose 3-epimerases in complex with p-fructose. (A) A. tumefaciens DPEase (PDB: 2HK1); (B) C. cellulolyticum DPEase (PDB: 3VNK) (C) P. cichorii DTEase
(PDB: 2QUN); Mn?* ions are shown as purple spheres and the water molecules are shown as red spheres. The stereo views were illustrated by the program PyMol. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Comparison of the active sites in ketose 3-epimerases bound with p-fructose.

The active sites A. tumefaciens DPEase

C. cellulolyticum DPEase

P. cichorii DTEase M. loti LREase

Residues involved in Glu150 Glu150
the metal coordinating site Asp183 Asp183
His209 His209
Glu244 Glu244
Residues responsible for the Glu156 Glu156
interaction between the His186 His186
enzyme and O-1, 0-2, Arg215 Arg215
and O-3 of p-fructose
Residues providing a Tyr6 Tyr6
hydrophobic environment Trp14 Trp14
around the substrate 1le66 His66
around the 0-4, 0-5, and Ala107 Ala107
0-6 of p-fructose Trp112 Trp112
Phe246 Phe246

References (Kim et al., 2006)

(Chan et al,, 2012)

Glu152 Glu147
Asp185 Asp180
His211 His206
Glu246 Glu241
Glul58 Glu153
His188 His183
Arg217 Arg212
Phe7 His7
Trp15 Leu252
Cys66 Ser64
Leu108 lle106
Trp113 His111
Phe248 Phe243

(Yoshida et al., 2007) (Uechi, Sakuraba, et al., 2013)

and p-allulose was approximately 30:70, except for R. sphaeroides
(23:77) DTEase, P. cichorii DTEase (20:80) and M. loti LREase (not
reported). The reaction temperature might change the equilibrium
ratio between substrate and product, such as the isomerization
process by p-xylose isomerase and L-arabinose isomerase. Similar
effects appeared in ketose 3-epimerase. For C. bolteae DPEase, the
equilibrium ratio between p-fructose and p-allulose was shifted
from 23:77 to 32:68, when the temperature increased from 30 °C to
60 °C. However, the reaction temperature showed no obvious effect
of Dorea sp. DPEase on the equilibrium ratio, which was maintained
in the range of 29:71 to 32:68. Similar to p-tagatose and L-ribulose,
the conversion rate of p-allulose could be greatly enhanced by a
borate supplement. The maximum conversion rate was shifted to
64% by A. tumefaciens DPEase, with a borate-to-fructose ratio of 0.6
(Kim et al.,, 2008), because the borate binding affinity with p-allu-
lose was stronger than with p-fructose. Moreover, C. cellulolyticum
DPEase was overexpressed in Bacillus subtilis, producing 120 g/L p-
allulose from 500 g/L of p-fructose. This is the sole report on food-
grade overexpression of ketose 3-epimerase, making the industrial
p-allulose production possible (Li, Zhu, Zeng, Zhang, & Sun, 2013).

It is generally known that, immobilization of free enzymes is an
effective method for enzyme recycling and cost-efficiency
increasing. In a previous study, Itoh et al. first reported the
immobilization of P. cichorii DTEase, using the Chltopearl beads of
BCW 2503 as the carrier. By this means, 90 g of p-allulose were
produced from 500 g of p-fructose at pH 7.5 and 45 °C for 10 d (Itoh,
Sato, & Izumori, 1995). After that, Takeshita et al. improved the
mass production of p-allulose by immobilizing P. cichorii DTEase on
a continuous bioreactor, which could reach a conversion rate of
25%. Through treatment with baker's yeast and crystallization with
ethanol, approximately 20 kg of pure p-allulose was achieved after
60 d (Takeshita, Suga, Takada, & [zumori, 2000). In 2009, Lim et al.
immobilized another A. tumefaciens DPEase on Duolite A568 beads
with borate, producing 441 g/L p-allulose from 700 g/L p-fructose
(Lim, Kim, & Oh, 2009). Moreover, the 133L/S213C variant of
A. tumefaciens DPEase with and without borate was immobilized as
well, and showed no decreased activity during the operation time
of 30 d (Choi et al, 2011). Recently, C. cellulolyticum DPEase
immobilized on Artificial Oil Bodies (AOBs) retained more than 50%
of its initial activity after five cycles (Tseng et al., 2014).

According to the Izumoring strategy, p-allulose could be pro-
duced from p-glucose via the intermediate p-fructose by coupling p-
glucose isomerase (Glase) and DPEase. In 1995, Itoh et al. carried
out this project by coupling immobilized P. cichorii DTEase with
Glase (Itoh et al., 1995). Moreover, by constructing the co-
expression of Bacillus sp. Glase and Ruminococcus sp. DPEase in
Escherichia coli, Men et al. presented a one-step process for p-

allulose production from p-glucose with a conversion yield of 16%
(Men et al., 2014). Furthermore, Thermus thermophilus Glase and
Agrobacterium tumefacienswere (133L/S213C variant) DPEase were
successfully immobilized on the wall of Saccharomyces cer-
evisiaespore spores with a 12.0% yield of p-allulose from p-glucose
by continuously repeating the two-step process (Li et al., 2015).
Additionally, Yang et al. designed and constructed a novel recom-
bination pathway in Corynebacterium glutamicum, which contained
dihydroxyacetone phosphate (DHAP)-dependent rhamnulose-1-
phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB).
Using a fed-batch culture mode, this strain could accumulate 13.4 g/
L of p-allulose and 19.5 g/L of p-sorbose (Yang et al., 2015).

Nevertheless, to achieve the large-scale p-allulose production,
the high cell density cultivation (HCDC) technique should be
introduced, because all of the methods mentioned above need large
quantities of cells or enzymes.

6. Conclusion and future scope

Although ketose 3-epimerases from various microorganism
sources have been identified and characterized, until now, no
ketose 3-epimerases were regarded as completely appropriate for
industrial applications. The major restrictions are poor thermo-
stability, alkaline optimal pH, catalytic inefficiency, and low turn-
over for the substrate. To solve these problems, further screening of
novel ketose 3-epimerases is needed. In addition, reported ketose
3-epimerases need molecular modification through site-directed
mutagenesis or directed evolution to improve the enzyme activity
and thermostability. Moreover, mutants with higher catalytic
properties could be screened, by using a high-throughput screening
(HTS) method. To avoid food safety problems, expression in E. coli
should be urgently substituted with the food-grade expression in
Bacillus subtilis, Pichia pastoris, Saccharomyces cerevisiae or Lacto-
coccus lactis in the future.
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